

MICROWAVE REMOTE SENSING-BASED MACHINE LEARNING METHOD FOR IRRIGATION ESTIMATION IN FLORIDA

Laura Almendra-Martín¹, Jasmeet Judge¹, Alejandro Monsivais-Huertero², Pang-Wei Liu³, George Worrall⁴

¹Center for Remote Sensing, Agricultural and Biological Engineering Department, University of Florida ²Instituto Politécnico Nacional, Mexico City, Mexico ³NASA Goddard Space Flight Center, Maryland ⁴Deep Grain, St Louis, Missouri

FUNDINGS SUPPORT FROM USDA-CIG AWARD #P0206601

CONTENT

1. Introduction and motivation

- Significance of irrigation estimation in Florida.
- Microwave remote sensing and hydrology.
- 2. Objectives
- 3. Methods
 - Synthetic data generation.
 - Machine learning framework: training and validation.
- 4. Results
- 5. Summary and future work

IRRIGATION IN FLORIDA

- Irrigation records typically come from surveys.
- Monitoring this activity at high spatio-temporal scales is challenging but can ensure an efficient water usage.
- Florida is one of the most heavily irrigated areas in eastern US.
- Soil moisture (SM) has shown to be a key variable for irrigation estimations.

Dieter aet al., 2018. Estimated use of water in the United States in 2015: U.S. Geological Survey Circular

MICROWAVE REMOTE SENSING

- Microwave penetrate through clouds, vegetation, and soil.
- Allows day-and-night observation.
- Interaction of microwaves with materials depends on their dielectric properties.
- SM can be accurately retrieved using microwave remote sensing sensors.

REMOTE SENSING SM PRODUCTS

Early microwave-based SM products available globally every 2-3 days at 40-36 km spatial resolution.

- > Downscaling techniques \rightarrow up to 1 km SM product.
- Merging data from different satellites generate longterm global SM records.

Upcoming missions are expected to generate SM products at 100 to 200 m.

OBJECTIVES

Develop a machine learning (ML) framework to estimate irrigation occurrence and amount in Florida.

ML algorithms need data for training, but irrigation records are scarce.

- I. Generate synthetic data using physically-based models for training.
- II. SVM-based ML for irrigation estimation for future high-resolution microwave-based SM products.

SYNTHETIC WEATHER GENERATOR

PLANTING DECISION MODEL

> Crop: sweet corn \rightarrow planting period:

Early season or Late season

JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

- Suitable planting days within the planting period:
 - Without precipitation
 - Relative SM range 0.4 0.9
 - Minimum temperatures > 7 °C

Day of planting randomly selected

Length of the season randomly selected from 74 ±4 days

WATER BALANCE MODEL (SM2RAIN)

WATER BALANCE

$$nZ\frac{dS(t)}{dt} = r(t) + i(t) - g(t) - e(t)$$

$$nZ(S_t - S_{t-1}) = WI_t - S_t PET_t - K_s S_t^{3+\frac{2}{\lambda}}$$

 $S(t) = \begin{bmatrix} \theta(t) - \theta_r \\ \theta_s - \theta_r \end{bmatrix} \qquad \begin{array}{l} \theta(t) \text{ Volumetric SM} \\ \theta_r \text{ Residual SM} \\ \theta_s \text{ Saturation SM} \end{array}$

 $e_t = S_t PET_t$

 g_t

$$= K_s S_t^{3+\frac{2}{\lambda}} \qquad \begin{array}{c} K_s \text{ Saturated hydraulic conductivity} \\ \lambda \text{ Pore size distribution index} \end{array}$$

WATER BALANCE

$$nZ\frac{dS(t)}{dt} = r(t) + i(t) - g(t) - e(t)$$

$$nZ(S_t - S_{t-1}) = WI_t - S_t PET_t - K_s S_t^{3+\frac{2}{\lambda}}$$

$$K_s \mathbf{S_t}^{3+\frac{2}{\lambda}} + (nZ + PET_t)\mathbf{S_t} - (WI_t + nZS_{t-1}) = 0$$

Equation type to solve knowing S_{t-1}

> Initial value of relative SM ($S_{t=0}$) for Z = 16 cm :

 $AS_t^{\alpha} + BS_t - C = 0$

Synthetic time series starts at 12th day.

MACHINE LEARNING FRAMEWORK

ML framework A: Support vector regression (SVR)

ML framework B: Support vector classification (SVC) + SVR

VALIDATION OF THE ML FRAMEWORK

- Holdout cross Cross validation:
 - 100 growing seasons of synthetic data \rightarrow

RESULTS CROSS VALIDATION

ML framework A (SVR):

	0/	Estimated		
70		No irr.	Irr.	
ue	No lrr.	64.57	20.72	
μL	lrr.	0.25	14.46	

Occurrence

Amount				
RMSE (mm)	6.29			
% days underestimating	99.27			
% days overestimating	0.73			

➢ ML framework B (SVC + SVR):

Occurrence

%		Estimated			
		No irr.	Irr.		
ne	No Irr.	85.51	0.15		
LΓι	lrr.	7.36	6.97		

Amount				
RMSE (mm)	2.01			
% days underestimating	60.90			
% days overestimating	39.10			

SUMMARY AND FUTURE WORK

Summary:

- > Applying SVR leads to underestimation of irrigation.
- > SVR tends to detect more false events than SVC, while SVC misses more events.
- > The amount of irrigation can be better estimated with information about irrigation occurrence.

Future work:

- > Use neural networks (NN) that account for more complex relationships.
- > Evaluate the framework with *in situ* data.

THANK YOU

FUNDINGS SUPPORT FROM USDA-CIG AWARD #P0206601

$$nZ\frac{dS(t)}{dt} = r(t) + i(t) - e(t) - g(t) - sr(t)$$

 $e_t = S_t PET_t \quad \left| \begin{array}{c} g_t = K_s S_t^{3+\frac{2}{\lambda}} \end{array} \right| \quad WI_t = r_t + i_t$

$$A \equiv K_s \qquad B \equiv nZ + PET_tS_t \qquad C \equiv WI_t + nZS_{t-1} \qquad \alpha \equiv 3 + \frac{2}{\lambda}$$

$$AS_t^{\ \alpha} + BS_t - C = 0$$

Newton Raphson Method

$$nZ(S_t - S_{t-1}) = WI_t - S_t PET_t - K_s S_t^{3+\frac{2}{\lambda}}$$

$$f(S_t) = AS_t^{\alpha} + BS_t - C$$

$$S_t^{n+1} = S_t^n - \frac{f(S_t^n)}{f'(S_t^n)}$$

$$K_s S_t^{3+\frac{2}{\lambda}} + (nZ + PET_t)S_t - (WI_t + nZS_{t-1}) = 0$$

Start
$$S_t^0 = S_{t-1}$$

End $S_t = S_t^{n+1}$ when $|S_t^n - S_t^{n+1}| < 0.001$