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« Significance of irrigation estimation in Florida.
* Microwave remote sensing and hydrology.
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IRRIGATION IN FLORIDA
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Irrigation records typically come from surveys.

Monitoring this activity at high spatio-temporal scales is
challenging but can ensure an efficient water usage.

Florida is one of the most heavily irrigated areas in eastern
US.

Soil moisture (SM) has shown to be a key variable for
irrigation estimations.



MICROWAVE REMOTE SENSING
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REMOTE SENSING SM PRODUCTS

» Early microwave-based SM products available globally
every 2-3 days at 40-36 km spatial resolution.

dcesa

» Downscaling techniques — up to 1 km SM product.

» Merging data from different satellites generate long-
term global SM records.

s
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& sentinel-2

» Upcoming missions are expected to generate SM

NIS/{\ﬁ
N 540 S s> products at 100 to 200 m.




OBJECTIVES

Develop a machine learning (ML) framework to estimate irrigation occurrence and amount in Florida.

Solar
radiation

ML algorithms need data for training, but irrigation records are scarce.

|.  Generate synthetic data using physically-based models for training.

Il. SVM-based ML for irrigation estimation for future high-resolution microwave-based
SM products.



SYNTHETIC DATA GENERATION
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SYNTHETIC DATA GENERATION
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SYNTHETIC DATA GENERATION

Statistical
— weather
generator

Synthetic weather
100 time series

Parameter calibration
(NASA POWER)

Planting
decision
model

100 growing

Potential seasons

evapotranspiration
(PET)

Water balance
model
(SM2RAIN)

Soil properties

Updated SM time

series

Rain-based
irrigation
generator

Simulated irrigation 9 ML input
| ML output
| Model




SYNTHETIC WEATHER GENERATOR
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SYNTHETIC DATA GENERATION

Statistical
weather
generator

Synthetic weather
100 time series

Parameter calibration
(NASA POWER)

Potential
evapotranspiration
(PET) Water balance
model
(SM2RAIN)

Soil properties

Planting
decision
model

100 growing
seasons

1

Rain-based
irrigation
generator

Simulated irrigation

Initial SM

time series

9 ML input
| ML output
I Model



PLANTING DECISION MODEL

» Crop: sweetcorn — planting period:

Early season or Late season

JAN FEB-MAY JUN | JUL | AUG | SEP | OCT | NOV | DEC

» Suitable planting days within the planting period:

= Without precipitation )
= Relative SMrange 0.4 - 0.9 > Day of planting randomly selected
=  Minimum temperatures > 7 °C

_/

» Length of the season randomly selected from 74 +4 days



SYNTHETIC DATA GENERATION
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WATER BALANCE MODEL (SM2RAIN)

WATER BALANCE Water input rate Wm(t)
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WATER BALANCE MODEL (SM2RAIN)
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MACHINE LEARNING FRAMEWORK

» ML framework A: Support vector regression (SVR)

X = [x1 X2 ... X

nl
Weather, Irrigation
SM, PET —> —> occurrence & amount

» ML framework B: Support vector classification (SVC) + SVR

X = [x1 x5 ... x] Y, Xy = [x1 x3 .. Xp44] Y,

Weather,
Irrigation SM, PET, Irrigation
occurrence = Irrigation = = amount
occurrence

Weather,
SM. PET —




VALIDATION OF THE ML FRAMEWORK

> Holdout cross Cross validation:

set training (70 years)

= 100 growing seasons of synthetic data — set testing (30 years)

10 repetitions
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RESULTS CROSS VALIDATION

» ML framework A (SVR):
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SUMMARY AND FUTURE WORK

Summary:
» Applying SVR leads to underestimation of irrigation.
» SVR tends to detect more false events than SVC, while SVC misses more events.

» The amount of irrigation can be better estimated with information about irrigation occurrence.

Future work:

» Use neural networks (NN) that account for more complex relationships.

» Evaluate the framework with in situ data.
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WATER BALANCE (SM2RAIN)
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